# I would like searching boy who Radiometric dating meteorites tattoos

How do scientists find the age of planets date samples or planetary time relative age and absolute age? If carbon is so short-lived in comparison to potassium or uranium, why is it that in terms of the media, we mostly about carbon and rarely the others?

When the planets and asteroids formed, they contained a of different radioactive isotope s, or radionuclides. Radionuclides decay at characteristic rates. The time it takes for half of the atoms of a quantity of a radionuclide Radiometric dating meteorites decay, the half-lifeis a common way of representing its decay rate. Many radionuclides have half-lives that are similar to or longer than the age of the solar system; for this reason they are often called long-lived radionuclides. As a result of their longevity, they are still present in meteorites and on Earthand they are commonly used for dating rocks and meteorites. Scientists typically determine the age of a rock or meteorite by using the isochron method.

Age: | 54 |

Views: 5690

Petrology Tulane University Prof. Stephen A. Nelson Radiometric Dating Prior to the best and most accepted age of the Earth was that proposed by Lord Kelvin based on the amount of time necessary for the Earth to cool to its present temperature from a completely liquid state.

Although we now recognize lots of problems with that calculation, the age of 25 my was accepted by most physicists, but considered too short by most geologists. Then, inradioactivity was discovered. Recognition that radioactive decay of atoms occurs in the Earth was important in two respects: It provided another source of heat, not considered by Kelvin, which would mean that the cooling time would have to be much longer.

It provided a means by which the age of the Earth could be determined independently. Principles of Radiometric Dating. Radioactive decay is described in terms Radiometric dating meteorites the probability that a constituent particle of the nucleus of an atom will escape through the potential Energy barrier which bonds them to the nucleus.

The energies involved are so large, and the nucleus is so small that physical conditions in the Earth i. T and P cannot affect the rate of decay. The rate of decay or rate of change of the N of particles is proportional to the Radiometric dating meteorites at any time, i. So, we can write. After the passage of two half-lives only 0.

### Radioactive dating of meteorites

This can only be done for 14 C, since we know N 0 from the atmospheric ratio, assumed to be constant through time. For other systems we have to proceed further. The only problem is that we only know the of daughter atoms Radiometric dating meteorites present, and some of those may have been Radiometric dating meteorites prior to the start of our clock.

We can see how do deal with this if we take a particular case. The neutron emits an electron to become a proton. We still don't know 87 Sr 0the amount of 87 Sr daughter element initially present. Thus, 86 Sr is a stable isotope, and the amount of 86 Sr does not change through time. So, applying this simplification. The reason for this is that Rb has become distributed unequally through the Earth over time. For example the amount of Rb in mantle rocks is generally low, i. Thus we could tell whether the rock was derived from the mantle or crust be determining its initial Sr isotopic ratio as we discussed ly in the section on igneous rocks.

Two isotopes of Uranium and one isotope of Th are radioactive and decay to produce various isotopes of Pb. The decay schemes are as follows. Note that the present ratio of.

If these two independent dates are the same, we say they are concordant. We can also construct a Concordia diagram, Radiometric dating meteorites shows the values of Pb isotopes that would give concordant dates. The Concordia curve can be calculated by defining the following:. Zircon has a high hardness 7. Zircon can also survive metamorphism. Chemically, zircon usually contains high amounts of U and low amounts of Pb, so that large amounts of radiogenic Pb are produced.

Other minerals that also show these properties, but are less commonly used in radiometric dating are Apatite and sphene. Discordant dates will not fall on the Concordia curve. Sometimes, however, numerous discordant dates from the same rock will plot along a line representing a chord on the Concordia diagram.

Such a chord is called a discordia. We can also define what are called Pb-Pb Isochrons by combining the two isochron equations 7 and 8.

Since we know that theand assuming that the Pb and Pb dates are the same, then equation 11 is the equation for a family of lines that have a slope. The answer is about 6 billion years.

This argument tells when the elements were formed that make up the Earth, but does not really give us the age of the Earth. It does, however, give a maximum age of the Earth.

Is this the age of the Earth? Lunar rocks also lie on the Geochron, at least suggesting that the moon formed at the same time as Radiometric dating meteorites. Modern Oceanic Pb - i. Pb separated from continents and thus from average crust also plots on the Geochron, and thus suggests that the Earth formed at the same time as the meteorites and moon.

Thus, our best estimate of the age of the Earth is 4. The initial ratio has particular importance for studying the chemical evolution of the Earth's mantle and crust, as we discussed in the section on igneous rocks. Since K is one of the 10 most abundant elements in the Earth's crust, the decay of 40 K is important in dating rocks.

But this scheme is not used because 40 Ca can be present as both radiogenic and non-radiogenic Ca. Since Ar is a noble gas, it can escape from a magma or liquid easily, and it is thus assumed that no 40 Ar is present initially. Note that this is not always true. If a magma cools quickly on the surface of the Earth, some of the Ar may be trapped. If this happens, then the date obtained will be older than the date at which the magma erupted. For example lavas dated by K-Ar that are historic in age, usually show 1 to 2 my old ages due to trapped Ar. Such trapped Ar is not problematical when the age of the rock is in hundreds of Radiometric dating meteorites of years.

The dating equation used for K-Ar is:.

## Our work and services

Some of the problems associated with K-Ar dating are Excess argon. This is only a problem when dating very young rocks or in dating whole rocks instead of mineral separates. Minerals should not contain any excess Ar because Ar should not enter the crystal structure of a mineral when it crystallizes.

Thus, it always better to date minerals that have high K contents, such as sanidine or biotite. If these are not present, Plagioclase or hornblende. If none of these are present, then the only alternative is to date whole rocks. Atmospheric Argon. Some Radiometric dating meteorites Ar could be absorbed onto the sample surface.

This can be corrected for.

Metamorphism or alteration. Most minerals will lose Ar on heating above o C - thus metamorphism can cause a loss of Ar or a partial loss of Ar which will reset the atomic clock. If only partial loss of Ar occurs then the age determined will be in between the age of crystallization and the age of metamorphism.

If complete loss of Ar occurs during metamorphism, then the date is that of Radiometric dating meteorites metamorphic event. The problem is that there is no way of knowing whether or not partial or complete loss of Ar has occurred. Examples of questions on this material that could be asked on an exam. Radiometric Dating.

### Dating of antarctic meteorites

Prior to the best and most accepted age of the Earth was that proposed by Lord Kelvin based on the amount of time Radiometric dating meteorites for the Earth to cool to its present temperature from a completely liquid state. Principles of Radiometric Dating Radioactive decay is described in terms of the probability that a constituent particle of the nucleus of an atom will escape through the potential Energy barrier which bonds them to the nucleus.

The half-life is the amount of time it takes for one half of the initial amount of the parent, radioactive isotope, to decay to the daughter isotope. Thus, if we start out with 1 gram of the parent isotope, after the passage of 1 half-life there will be 0. Some examples of isotope systems used to date geologic materials. To for this, we first note that there is an isotope of Sr, 86 Sr, that is: 1 non-radiogenic not produced by another radioactive decay process2 non-radioactive does not decay to anything else. If we divide equation 4 through by the amount of 86 Sr, then we get:.

Note also that equation 5 has the form of a linear equation, i. How can we use this? In nature, however, each mineral in the rock is likely to have a different amount of 87 Rb. Thus, once the rock has cooled to the point where diffusion of elements does not occur, the 87 Rb in each mineral will decay to 87 Sr, and each mineral will have a different 87 Rb and 87 Sr after passage of time.

The decay schemes are as follows 1. The discordia is often interpreted by extrapolating both ends to intersect the Concordia. Pb leakage is the most likely cause of discordant dates, since Pb will be occupying a site in the crystal that has suffered radiation damage Radiometric dating meteorites a result of U decay.

U would have been stable in the crystallographic site, but the site is now occupied by by Pb. An event like metamorphism could heat the crystal to the point where Pb will become mobile. Another Radiometric dating meteorites scenario involves U leakage, again possibly as a result of a metamorphic event. U leakage would cause discordant points to plot above the cocordia.

The Age of the Earth A minimum age of the Earth can be obtained from the oldest known rocks on the Earth.

So far, the oldest rock found is a tonalitic Gneiss metamorphic rock rock from the Northwest Territories, Canada, with an age of 3.